DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.

نویسندگان

  • Damon Meyer
  • Becky Xu Hua Fu
  • Wolf-Dietrich Heyer
چکیده

Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.

Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although th...

متن کامل

Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences

'Classical' non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA p...

متن کامل

BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks.

BRCA1 is critical for the maintenance of genomic stability, in part through its interaction with the Rad50.Mre11.Nbs1 complex, which occupies a central role in DNA double strand break repair mediated by nonhomologous end joining (NHEJ) and homologous recombination. BRCA1 has been shown to be required for homology-directed recombination repair. However, the role of BRCA1 in NHEJ, a critical path...

متن کامل

Chromosome rearrangements via template switching between diverged repeated sequences.

Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) hav...

متن کامل

Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions

Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 50  شماره 

صفحات  -

تاریخ انتشار 2015